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Abstract—A robust and optimized system architecture has
been developed and designed for adaptive beamformer with a
Microphone Array. The system includes following subsystems -
MMSE STSA Estimator, DOI (Direction of Interest) Estimator
and an Adaptive Beamformer. This work is submitted to fulfill
the requirement of Cadence Design Contest-2015. The system
architecture has been implemented and tested for Xtensa Pro-
cessor which was configured for HiFi-2 DSP Standard for audio
processing.

Index Terms—Adaptive Beamformer, Microphone Array, DOI
Estimation, Xtensa, Hifi-2 DSP Standard.

I. INTRODUCTION

Electronically steerable Microphone Arrays have become
a rapidly emerging tool in speech data acquisition and pro-
cessing. One of their prime applications is building adaptive
beamformer for the tracking of active talkers while suppressing
noise and interferences. Designing an adaptive beamformer
primarily includes two important segments- a DOI estimator
which localizes the speech source in the receptive area and a
beamformer which produces directive gain toward the speech
source and suppresses noise and interferences. Designing
both of the segments has been considered as a classical and
challenging problem because speech signals are wideband and
highly non-stationary in nature.

A novel system architecture based on MMSE (Minimum
Mean Square Error) STSA (Short Time Spectrum Amplitude)
Estimator, MCCC (Multi Channel Cross Correlation) and
Frost Adaptive Beamformer has been designed, developed and
implemented using Xtensa processor. The system is designed
with ample robustness so that it can satisfactorily meet the
given requirement stated in the project statement of Cadence
Design Contest-2015.

II. THEORY

The system architecture includes three subsystems which
employs three different algorithms.

A. The Gaussian Based MMSE STSA Estimator For Noise
Suppression

In this algorithm the MMSE STSA [1] estimator is de-
rived which is based on modeling speech and noise spectral
components as statistically independent Gaussian RV. The
reason behind using this method is primarily for dealing with
non-stationary microphone noise which is ‘Pink Noise’ as

per project statement. In order to derive the MMSE STSA
estimator, the a priori probability distribution of the speech
and noise Fourier expansion coefficients are assumed, as these
are unknown in practice. Let y(n) = x(n) + d(n) be the
sampled noisy speech signal consisting of the clean signal
x(n) and the noise signal d(n). Taking the short-time Fourier
transform of y(n), to have:

Y (wk) = X(wk) +D(wk)

Where, wk = 2πk
N , k = 0, 1, 2, · · · , N − 1 and N is the frame

length. The above equation can also be expressed in polar form
as

Yke
jθy(k) = Xke

jθx(k) +Dke
jθd(k)

As, the spectral components are assumed to be statistically in-
dependent, the MMSE amplitude estimator X̂k can be derived
from Y (wk) only. That is,

X̂k = E{Xk | Y (w0), Y (w1), · · · }
= E{Xk | Y (wk)}

=

∫∞
0

∫ 2π

0
xkp(Y (wk) | xk, θk)p(xk, θk)dθkdxk∫∞

0

∫ 2π

0
p(Y (wk) | xk, θk)p(xk, θk)dθkdxk

where θk = θx(k). Under the assumed Gaussian model
p(Y (wk) | xk, θk) and p(xk, θk) are given by

p(Y (wk) | xk, θk) =
1

πλd(k)
exp{− 1

λd(k)
|Yk −Xke

jθx(k)|2}

p(xk, θk) =
1

πλd(k)
exp{− X2

k

λd(k)
}

Where, λx(k) , E{|Xk|2}, and λd(k) , E{|Dk|2} are
variences of the kth spectral component of the speech and
noise the equation gives

X̃k = Γ(1.5)

√
vk
γk

exp{−vk
2
}
[
(1 + vk)I0(

vk
2

) + vkI1(
vk
2

)
]

Where Γ(·) donates the Gamma function and I0(·) and I1(·)
denote the modified Bessel function of zero and first or-
der,respectively. The variable, vk is defined by

vk ,
ξk

1 + ξk
γk



Where ξk and γk are interpreted as the a priori and a posteriori
signal-to-noise ratio (SNR), respectively and are defined by

ξk ,
λx(k)

λd(k)

γk ,
Y 2
k

λd(k)

At high SNR, ξk � 1 and γk � 1; therefore, the estimator
can be simplified as

X̃k ,
ξk

1 + ξk
γk

The above is called Weiner estimator.
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Fig. 1: TDOA Estimation

B. DOI Estimator Subsystem

The problem of finding direction of arrival of a speech
source can be solved by estimating TDOA (Time Delay of
Arrival) estimation. In the simple case of two microphones,
the TDOA estimation is depicted in Fig.1. In this figure
the two dimensional geometry of TDOA estimation problem
is portrayed. The signal s1[n] and s2[n] are speech signals
including ambient noise. The v1[n] and v2[n] are microphone
noise, which is in our case is pink noise. The noises are
assumed uncorrelated with both speech signals and noises at
other microphones. The acoustical path difference experienced
by speech signals is therefore d = b cos θ, where θ is the
incident angle as well as the direction of source. Now knowing
the microphone spacing b and determining d using TDOA
(Time Delay of Arrival) estimation, the incident angle θ can
be calculated.

For the estimation of TDOA we use Multi Channel Cross
Correlation Method (MCCC) [2]. The microphone array con-
sists of L microphones in a linear equidistantly spaced array,
from the 1st to the Lth microphone.The delay between the 1st

and the Lth microphones is then given by

fl = (l − 1)τ

where τ is the time delay between two neighboring micro-
phones.
For the application of the MCCC algorithm, we consider the
column vector of the aligned signals at the L microphones

x1:L[n− fL(m)] = [x1[n− fL(m) + f1(m)]

x2[n− fL(m) + f2(m)] · · ·xL[n]]

with m/fs = τ̂ as a guess for the delay, where fs is
the sampling frequency. The corresponding spatial correlation
matrix of the microphone signals is then

Rm,1:L = E{x1:L[n− fL(m)] · xT1:L[n− fL(m)]}

=


rm,11 · · · rm,1L

...
. . .

...
rm,L1 · · · rm,LL


where the cross-correlation between the two signals xk[n −
fl(m)] and xl[n− fk(m)] is given by

rm,kl = E{xk[n− fl(m)]xl[n− fk(m)]}

The spatial correlation matrix Rm,1L can be factored as

Rm,1:L = DR̃m,1:LD

with the diagonal matrix

D =


√

E{x21[n]} · · · 0

...
. . .

...

0 · · ·
√
E{x21[n]}


the symmetric matrix

R̃m,1:L =


1 · · · ρm,1L
...

. . .
...

ρm,L1 · · · 1

 ,
and the cross-correlation coefficients between xk[n − fl(m)]
and xl[n− fk(m)]

ρm,kl =
E{xk[n− fl(m)]xl[n− fk(m)]}√

E{x2k[n]}E{x2l [n]}
(1)

with k and l = 1, 2, · · · , L. In the case of two microphones,
the two-channel cross-correlation coefficient is given by

ρ2m,12 = 1− det R̃m,1:2

Similarly, the multichannel cross-correlation coefficient is de-
fined as [1]

ρ2m,1L = 1− det R̃m,1:L

The delay estimation is then based on maximizing the cross-
correlation coefficient ρ2m,1:L or by minimizing the determi-
nant of the matrix R̃m,1L with respect to the guessed delay
m.



_ _ _ _ _ _ _ _ _

s1(n)

s2(n)

s3(n)

s8(n)

b1(n)

b2(n)

b3(n)

b8(n)M
ic

ro
p

h
o

n
e

 A
rr

a
y

 o
f 

8
 M

ic
ro

p
h

o
n

e
s

M
M

S
E

 S
T

S
A

 E
st

im
a

to
r 

n1(n)

n2(n)

n3(n)

n8(n)

_ _ _ _ _ _ _

M
o

d
if

ie
d

 M
C

C
C

 b
a

se
d

 D
O

I 
E

st
im

a
to

r

A
d

a
p

ti
v

e
 F

ro
st

 B
e

a
m

fo
rm

e
r

Estimated DOI

output
+

Fig. 2: System Architecture

C. The Adaptive Frost Beamformer

Frost beamformer [3] is conventional beamforming algo-
rithm for wideband signal e.g. speech. In our case we have
assumed that at 0◦ the beamformer has gain of 1 and at other
direction is minimizes the power. At the beginning, we set the
weight vector to

w[0] = C(CHC)−1f

for initialization, which satisfies the constraint CHw = f . At
each iteration, the vector w is updated in the direction of the
negative gradient by a step proportional to a scaling factor µ
according to

w[n+ 1] = w[n]− µ(Rxxw[n] +Cλ[n])

Since, w[n+ 1] must satisfy the constraint, we can substitute
this Equation into CHw = f and solve for the Lagrange
multipliers λ[n].Then we substitute λ[n] into the iteration
equation and arrive at

w[n+ 1] = w[n]− µ(I −C(CHC)−1Rxxw[n]

+C(CHC)−1(f −CHw[n])

now defining the short-hand of P = I−C(CHC)−1CH , the
algorithm in Equation now can be rewritten as

w[n+ 1] = C(CHC)−1f + P (w[n]− µRxxw[n])

Not knowing the true second order statistics Rxx, the cor-
relation matrix can be replaced by its simple approximation
Rxx = xxH . This results in the minimization of the instan-
taneous square error rather than the mean square error, and
leads to the following stochastic constrained algorithm

w[n+ 1] = C(CHC)−1f + P (w[n]− µe∗[n]x[n])

which is also known as the Frost’s algorithm. To increase
robustness against DOI error a small quantity to the diagonal
elements of the estimated covariance matrix is added and the
modified update equation becomes

w[n+1] = C(CHC)−1f +P (w[n]−µe∗[n]x[n]−µδw[n])

where δ is the diagonal loading factor.

III. INNOVATION IN THE ALGORITHM

A. Modification in MCCC

The aforementioned MCCC algorithm used for TDOA esti-
mation implies a poor resolution in determining DOI because
of some inherent physical constraints in the system. These con-
straints are primarily imposed by required inter-microphone
distance in the array. The required inter-microphone spacing
comes from both system specification and for avoiding spatial
aliasing. Moreover fractional delay between microphones is
most common phenomena in the system. The fundamental
inability of MCCC to bring the role of fractional delay makes
it a poor choice for high resolution TDOA estimation.

For overcoming these constraints and ensuring high reso-
lution DOI estimation, we bring a modification in MCCC.
This is done by applying interpolation on cross correlation
coefficient. To accomplish the most perfect interpolation we
choose the ‘Not a Knot spline’ interpolation method. There
are two reasons behind choosing this interpolation. Firstly, for
speech signals which are highly non-stationary in nature, it
requires higher order statistics to reveal useful information for
interpolation. Secondly, it can resemble the continuous time
auto-correlation sequence with minimum mean square error.
Moreover, the computational complexity is also moderate for
this very particular method of interpolation. Hence the frac-



tional TDOA estimation becomes more accurate and precise
with low convergence time.

B. MMSE STSA

The conventional MMSE STSA requires voice activity
detection to estimate silent zones. As the noise can vary over
time so it tries to detect the silent zones and thus update the
noise parameters accordingly. In our case we have 1/f noise
which is fixed for all the time, so we have estimated the noise
parameters only at the starting 1s taking it as a silent zone.

IV. SYSTEM ARCHITECTURE

The system works on window by window basis. For win-
dowing the speech samples we use hamming window. The
reason behind using this particular window is its ability of
reducing the correlation between widely separated spectral
components. For precise DOI estimation 40 percent overlap
between two consecutive windows are allowed. We chose
window length to be 512. Choosing this length ensures faster
performance in FFT, short time stationary constraint of speech
signal and good estimate of covariance in MCCC algorithm.

After windowing each of the 8 channel with noisy signal,
FFT is taken. Phase of these FFT values are saved and the
magnitude are sentto MMSE STSA subsystem. Taking IFFT
of the estimated amplitude combined with previously saved
phase, enhanced signal is obtained. This step minimizes the
1/f noise generated at each of the microphone channel.

The enhanced signals go into MCCC block for DOI estima-
tion. FFT is used here to for faster determination of covariance
coefficients. DOI of the desired signal is estimated here.

Using the estimated DOI, delays required for the each of
the channels are calculated. The signals are then appropriately
delayed to perform the pre-steering. As a result signals coming
from DOI are now in phase in all 8 channels.

Pre-steered signals are feed into beamforming block. The
constraint matrix and vector was constructed such that the
beam former will minimize power and maintain unity response
towards broadside. As the desired source is now at broad-
side(due to pre steering) , the frost beamformer adaptively
enhances the desired source and suppresses the interferences.

V. TEST SETUP

We test the system at various noises and interferences
to justify its robustness and response to various real time
scenarios. The test setup is configured as per our system design
and requirement which is given below

1) Number of microphones in the array: 8 (specified as
design criteria)

2) Length of array: 35 cm (specified as design criteria)
3) Spacing between microphones: d = 5 cm (uniformly

spaced microphones)
4) Talkers: Two male talkers, one female talker. All of

them are simultaneously active in the test scenario. We
randomly choose a main talker and consider the others
as randomly put discrete sources of interference. The

interferences can be up to −3 dB in power of the main
talker.

5) Noise: Two types of additive noises are present in the
system. One is stationary pink noise, which can be up
to −3 dB of Microphone signals. Another is ambient
white Gaussian noise, which can be up to −10 dB of
Speech signals.

The Processor was configured in the built in HiFi-2 [4]
standard mode. To simulate the results in the Xtensa Instruc-
tion Set Simulator (ISS), we opted for the ‘Cycle Accurate
Mode’ since it gives the best estimate of performance for
Hardware implementation. However, ‘TurboXim’ mode was
used for input and output periods; profiling was also turned
off for this period.

The code was run on one window of 512 samples. Each
such run gives corrected output for 307 new samples. The
code takes input from three text files. One text file carries the
new window data, one carries forwarded data from the last
window, and one carries noise estimate from the initial silent
zone.

VI. RESULTS & DISCUSSIONS

In this section we discuss performance of different blocks of
our system. At first performance of MCCC block to properly
identity DOI of the desired signal is evaluated. We run a
simulation with three speakers, one being the main talker
and other two are interferences. The main speaker and the
interferences are at 60, 110 and 150 degree. The simulation
was run using speech signal of 12 seconds, using window of
1024 we got a total of 335 windows. Following table shows
total number of different DOI’s estimated by our MCC block
within the resolution of 15 degrees for different interference
power. When no speaker is active in a particular window, 90◦

is found as the DOI.

TABLE I

Interference Average Power
(below main talker, in dB) 60◦ 110◦ 150◦ 90◦

3 85 41 48 88
4 93 32 43 88
5 101 33 35 92
6 122 32 26 97
7 128 29 25 102

When the main talker is not speaking but any other inter-
ference is active, the MCCC identifies that interference as the
main speaker as the power of that interference is maximum
in that window. As the simulation is run using interference
with average power below the main speaker, there occurs
many windows where interference has greater power that the
main speaker and as a result the resultant DOI points at that
direction.

Now we show the tracking capability of our algorithm.
A simulation was run for 12 second where the main talker



changes angular position with time. It is in 60◦, 110◦ and 160◦

respectively and no other source is present in this simulation.
As seen from Fig. 3, our algorithm can successfully track the
main talker when it changes its angular position.
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Fig. 3: Tracking capability of DOI estimator
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Fig. 6: Interference #2

Now we will show the enhancement of signal due to beam-
forming. A 3 second frame of main talker, two interference,
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Fig. 7: Signal at Microphone
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signal at 4th microphone channel and output of beamformer
is given in Fig. 4, 5, 6, 7 & 8 respectively.

As can be seen from the signal at microphone channel,
the signal of the main talker is buried in interference and
noise. After beamforming the output signal closely resembles
the original main signal. Noise and interference have been
suppressed. Although a little of distortion can be seen, this
signal is almost identical to the original signal when the audio
is played. This little amount of distortion is introduced at
MMSE STA block which is used to remove the 1/f noise
of microphone.

For further analysis of our system’s performance in fre-
quency domain we present the spectrogram of signal at various
stages of the system. Fig. 9, 10 & 11 shows the spectrogram
of clean speech signal, signal at microphone & final output of
beamformer respectively. The spectrograms clearly reveals the
SNR improvement of the target speech signal and precision of
DOI estimator & the beamformer.

From the profile of one such run in Xtensa, we get that the
total number of committed instructions were 5, 123, 135, 636
requiring a total of 7, 108, 774, 623 cycles. Some data from
the profile is presented below in Table II.

TABLE II

Operation Number of Cycles % of Cycles
[TOTAL] 7,108,774,623 100

muldf3 & muldf3 aux 1,911,132,210 26.87
adddf3 & adddf3 aux 1,041,984,429 14.64

divdf3 366,978,850 5.16
subdf3 754,333,195 10.61

The arithmetic operations thus require more than a fair share
of cycles/instructions. Aforementioned performance does not
make use of Hifi-2 Audio Engines built-in functions and
the optimization occurs in the algorithm portion only. HIFi-
2 processor’s standard configuration may handle high speed
audio signal processing norms like multiplication and addition
of 24-bit numbers efficiently in parallel process.

VII. CONCLUSIONS

As per project statement, we have designed a complete
Adaptive beamformer, simulated and evaluated its perfor-
mance in Xtensa Xplorer. During the course of project de-
velopment we did bring some major modifications and opti-
mizations in conventional speech processing algorithms which
are highly specific for the system. We are working on further
optimization to drastically reduce the required cycle number
exploiting the Hifi-2 DSP Standard’s features. We already have
configured two of subsystems. We are working on the final
of the three and expecting a major optimization taking the
advantage of Hifi-2 DSP Standard.
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